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Incompressible Stokes flow with heterogeneous viscosity
Commonly occurring problem in CS&E:
Creeping non-Newtonian fluid modeled by incompressible Stokes
equations with power-law rheology yields spatially-varying and highly
heterogeneous viscosity µ after linearization.

Nonlinear incompressible Stokes PDE:
−∇ ·

[
µ(u,x) (∇u +∇u>)

]
+∇p = f viscosity µ, RHS forcing f
−∇ · u = 0 seek: velocity u, pressure p

Linearization, then discretization with inf-sub stable finite elements yields:[
Aµ B>
B 0

] [
u
p

]
=
[

f
0

]
→ poor conditioning due to heterogeneous µ

Iterative scheme with upper triangular block preconditioning:[
Aµ B>
B 0

] [
Ãµ B>
0 S̃

]−1 [
u
p

]
=
[

f
0

]
Ã−1
µ ≈ A−1

µ

S̃−1 ≈ S−1 := (BA−1
µ B>)−1
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Severe challenges for parallel scalable PDE solvers
. . . arising, e.g., in Earth’s mantle convection:

I Severe nonlinearity, heterogeneity, and
anisotropy of the Earth’s rheology

I Sharp viscosity gradients in narrow regions
(6 orders of magnitude drop in ∼5 km)

I Wide range of spatial scales and highly
localized features, e.g., plate boundaries of
size O(1 km) influence plate motion at
continental scales of O(1000 km)

I Adaptive mesh refinement is essential
I High-order finite elements Qk × Pdisc

k−1,
order k ≥ 2, with local mass conservation;
yields a difficult to deal with discontinuous,
modal pressure approximation

Viscosity (colors), surface
velocity at sol. (arrows),
and locally refined mesh.



“Extreme-Scale Solver for Earth’s Mantle” by Johann Rudi

Outline

Driving scientific problem & computational challenges

w-BFBT and improved robustness of over established state of the art

HMG: Hybrid spectral-geometric-algebraic multigrid

Algorithmic scalability for HMG+w-BFBT

Parallel scalability and performance for HMG+w-BFBT



“Extreme-Scale Solver for Earth’s Mantle” by Johann Rudi

Propose: w-BFBT inverse Schur complement approx.[
Aµ B>
B 0

] [
Ãµ B>
0 S̃

]−1 [
u
p

]
=
[

f
0

]
Ã−1
µ ≈ A−1

µ

S̃−1 ≈ S−1 := (BA−1
µ B>)−1

Underlying principle of BFBT / Least Squares Commutators (LSC):
find a commutator matrix X s.t. (denote unit vectors by ej)

AµD−1B> −B>X ≈ 0 or min
X

∥∥∥AµD−1B>ej −B>Xej
∥∥∥2

C−1
∀j

⇒ S̃−1
BFBT :=

(
BC−1B>

)−1 (
BC−1AµD−1B>

) (
BD−1B>

)−1
.

Choice of matrices C,D is critical for convergence and robustness.

S̃−1
w-BFBT :=

(
BC−1

µ B>
)−1 (

BC−1
µ AµD−1

µ B>
) (

BD−1
µ B>

)−1

where Cµ = Dµ := M̃u(√µ) are responsible for efficacy and robustness.
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Ã−1
µ ≈ A−1

µ

S̃−1 ≈ S−1 := (BA−1
µ B>)−1

Underlying principle of BFBT / Least Squares Commutators (LSC):
find a commutator matrix X s.t. (denote unit vectors by ej)

AµD−1B> −B>X ≈ 0 or min
X

∥∥∥AµD−1B>ej −B>Xej
∥∥∥2

C−1
∀j

⇒ S̃−1
BFBT :=

(
BC−1B>

)−1 (
BC−1AµD−1B>

) (
BD−1B>

)−1
.

Choice of matrices C,D is critical for convergence and robustness.

S̃−1
w-BFBT :=

(
BC−1

µ B>
)−1 (

BC−1
µ AµD−1

µ B>
) (

BD−1
µ B>

)−1

where Cµ = Dµ := M̃u(√µ) are responsible for efficacy and robustness.



“Extreme-Scale Solver for Earth’s Mantle” by Johann Rudi

Propose: w-BFBT inverse Schur complement approx.[
Aµ B>
B 0

] [
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Robustness of w-BFBT over established state of the art
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Mp(1/µ) — state of the art
w-BFBT — proposed

#iterations with Mp(1/µ)

DR(µ) = . . . 104 106 108 1010

S1-rand 29 31 31 29
S8-rand 64 79 93 165

S16-rand 85 167 231 891
S24-rand 117 286 3279 5983
S28-rand 108 499 2472 >10000

#iterations with w-BFBT

DR(µ) = . . . 104 106 108 1010

S1-rand 29 29 29 30
S8-rand 38 40 41 44

S16-rand 40 45 47 48
S24-rand 31 32 39 55
S28-rand 29 31 42 60
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HMG: Hybrid spectral-geometric-algebraic multigrid
HMG hierarchy
pressure space

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

discont. modal

cont. nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

HMG V-cycle

p-MG

h-MG

AMG

direct

modal to
nodal proj.
high-order

L2-projection

linear
L2-projection

linear
projection

I Multigrid hierarchy of nested meshes is generated from an adaptively refined
octree-based mesh via spectral-geometric coarsening

I Re-discretization of PDEs at coarser levels
I Parallel repartitioning of coarser meshes for load-balancing (crucial for AMR);

sufficiently coarse meshes occupy only subsets of cores
I Coarse grid solver: AMG (PETSc’s GAMG) invoked on small core counts
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HMG: Hybrid spectral-geometric-algebraic multigrid
HMG hierarchy
pressure space

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

discont. modal

cont. nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

HMG V-cycle

p-MG

h-MG

AMG

direct

modal to
nodal proj.
high-order

L2-projection

linear
L2-projection

linear
projection

I High-order L2-projection onto coarser levels;
restriction & interpolation are adjoints of each other in L2-sense

I Chebyshev accelerated Jacobi smoother (Cheb. from PETSc) with tensorized
matrix-free high-order stiffness apply; assembly of high-order diagonal only

I Efficacy, i.e. error reduction, of HMG V-cycles is independent of core count
I No collective communication needed in spectral-geometric MG cycles
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p4est: Parallel forest-of-octrees AMR library [p4est.org]
Scalable geometric multigrid coarsening due to:

I Forest-of-octree based meshes enable fast refinement/coarsening
I Octrees and space filling curves used for fast neighbor search, mesh

repartitioning, and 2:1 mesh balancing in parallel
k0 k1

p0 p1 p1 p2

k0

k1

x0

y0

x1

y1

Colors depict different processor cores.
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Geometric coarsening: Repartitioning & core-thinning
I Parallel repartitioning of locally refined meshes for load balancing
I Core-thinning to avoid excessive communication in multigrid cycle
I Reduced MPI communicators containing only non-empty cores
I Ensure coarsening across core boundaries: Partition families of

octants/elements on same core for next coarsening sweep

36 38 36 38 9 14 27 17 35 0 32 0

coarsen,
2:1 bal. partition

Colors depict different processor cores, numbers indicate element count on each core.
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Algorithmic scalability for HMG+w-BFBT (decreasing h)
Discretization parameters to test algorithmic scalability:

I Finite element order k = 2 is fixed (Qk × Pdisc
k−1)

I Vary mesh refinement level `

Multigrid parameters for Aµ and Kd := BC−1
µ B>:

I 1 HMG V-cycle with 3+3 smoothing

#iterations for solving sub-systems Aµu = f , Kdp = g, and full Stokes system

` u-DOF [×106] It. Aµ p-DOF [×106] It. Kd DOF [×106] It. Stokes

4 0.11 18 0.02 8 0.12 40
5 0.82 18 0.13 7 0.95 33
6 6.44 18 1.05 6 7.49 33
7 50.92 18 8.39 6 59.31 34
8 405.02 18 67.11 6 472.12 34
9 3230.67 18 536.87 6 3767.54 34
10 25807.57 18 4294.97 6 30102.53 34
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Algorithmic scalability for HMG+w-BFBT (increasing k)
Discretization parameters to test algorithmic scalability:

I Vary finite element order k (Qk × Pdisc
k−1)

I Mesh refinement level ` = 5 is fixed

Multigrid parameters for Aµ and Kd := BC−1
µ B>:

I 1 HMG V-cycle with 3+3 smoothing

#iterations for solving sub-systems Aµu = f , Kdp = g, and full Stokes system

k u-DOF [×106] It. Aµ p-DOF [×106] It. Kd DOF [×106] It. Stokes

2 0.82 18 0.13 7 0.95 33
3 2.74 20 0.32 8 3.07 37
4 6.44 20 0.66 7 7.10 36
5 12.52 23 1.15 12 13.67 43
6 21.56 23 1.84 12 23.40 50
7 34.17 22 2.75 10 36.92 54
8 50.92 22 3.93 10 54.86 67
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Algorithmic scalability of nonlinear solver (decreasing h)

Max level of Finest resolution DOF Newton Total GMRES
refinement `max [m] [×106] iterations iterations

10 2443 0.96 14 1408
11 1222 2.67 18 1160
12 611 5.58 21 1185
13 305 11.82 21 1368
14 153 36.35 27 1527

I Finite element order fixed at Q2 × Pdisc
1

I Locally refined mesh with aggressive refinement at plate boundaries
I Multigrid parameters: 1 HMG V-cycle with 3+3 smoothing
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Implementation optimizations for Blue Gene/Q
(A) Before optimizations

(B) Reduction of blocking MPI
communication

(C) Minimization of integer operations
& cache misses

(D) Optimization of element-local
derivatives; SIMD vectorization Optimization phase
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(E) OpenMP threading of matrix-free apply loops (e.g. multigrid smoothing,
intergrid projection)

(F) MPI communication reduction, overlapping with computations, OpenMP
threading in intergrid operators

(G) Finite element kernel optimizations (e.g. increase of flop-byte ratio,
consecutive memory access, pipelining)

(H) Low-level optimizations (e.g. boundary condition enforcement, interpolation
of hanging finite element nodes)
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Global mantle convection problem for scalability tests

Discretization parameters to test parallel scalability:
I Finite element order k = 2 is fixed (Qk × Pdisc

k−1)
I Vary max mesh refinement `max for weak scalability
I Refinement down to ∼75m local resolution
I Resulting mesh has 9 levels of refinement

Multigrid parameters for Aµ and Kd:
I 1 HMG V-cycle with 3+3 smoothing
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Blue Gene/Q node performance in weak scaling
1 rack

(7.5 TFlops/s)
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Time & GFlops/s for MatVec and intergrid operators within Stokes solves
I Highly optimized matrix-free MatVecs dominate with ∼80% of time
I MatVecs and intergrid times consistent across 1 to 96 racks
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Extreme weak scalability for HMG+w-BFBT on Sequoia
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Ideal weak scalability
Solve [DOF/(sec/iter)]
Setup [DOF/sec]

Performed on LLNL’s Sequoia (Vulcan used for up to 65,536 cores):
IBM Blue Gene/Q architecture with 96 racks resulting in 98,304 nodes,
each node contains 16 compute cores and 16 GBytes of memory.
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Extreme strong scalability for HMG+w-BFBT on Sequoia
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Solve 4×OMP16

Performed on LLNL’s Sequoia (Vulcan used for up to 65,536 cores):
IBM Blue Gene/Q architecture with 96 racks resulting in 98,304 nodes,
each node contains 16 compute cores and 16 GBytes of memory.
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Appendix: Parallel scalability for HMG+w-BFBT on TACC’s Lonestar 5
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Multi-sinker problem for scalability tests on Lonestar 5

Discretization parameters to test parallel scalability:
I Finite element order k = 2 is fixed (Qk × Pdisc

k−1)
I Vary mesh refinement level ` for weak scalability

Multigrid parameters for Aµ and Kd := BC−1
µ B>:

I 1 HMG V-cycle with 3+3 smoothing
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Weak scalability for HMG+w-BFBT on Lonestar 5
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Ideal weak scalability
Solve [DOF/(sec/iter)]
Setup [DOF/sec]

Performed on TACC’s Lonestar 5: Cray XC40 with 1252 compute nodes,
each contains 2 Intel Haswell 12-core processors and 64 GBytes of memory.
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Strong scalability for HMG+w-BFBT on Lonestar 5
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Solve 24×OMP1
Solve 6×OMP4
Solve 2×OMP12
Solve 1×OMP24

Performed on TACC’s Lonestar 5: Cray XC40 with 1252 compute nodes,
each contains 2 Intel Haswell 12-core processors and 64 GBytes of memory.
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